Texture Segmentation by Evidence Gathering
نویسندگان
چکیده
A new approach to texture segmentation is presented which uses Local Binary Pattern data to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform style R-tables as unique descriptors for each texture class and an accumulator is used to store votes for each texture class. Tests on the Brodatz database and Berkeley Segmentation Dataset have shown that our algorithm provides excellent results; an average of 86.9% was achieved over 50 tests on 27 Brodatz textures compared with 80.3% achieved by segmentation by histogram comparison centred on each pixel. In addition, our results provide noticeably smoother texture boundaries and reduced noise within texture regions. The concept is also a “higher order” texture descriptor, whereby the arrangement of texture elements is used for classification as well as the frequency of occurrence that is featured in standard texture operators. This results in a unique descriptor for each texture class based on the structure of texture elements within the image, which leads to a homogeneous segmentation, in boundary and area, of texture by this new technique.
منابع مشابه
Colour Texture Segmentation Using Evidence Gathering
A new approach to colour-texture segmentation is presented which uses Local Binary Pattern data and a new colour quantisation scheme based on hue and saturation to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform st...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملClassification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کاملAutomatic texture segmentation in early vision: Evidence from priming experiments
Texture segmentation is usually regarded as a fast, early, automatic, preattentive process. Nevertheless, naive participants in texture segmentation tasks are usually not able to perform the task explicitly when the textures are presented rather briefly (49 ms) and subsequently masked. In two experiments it was investigated whether texture stimuli were, nevertheless, automatically segmented und...
متن کامل